Large Margin Training of Continuous Density Hidden Markov Models

نویسندگان

  • Fei Sha
  • Lawrence K. Saul
چکیده

Continuous density hidden Markov models (CD-HMMs) are an essential component of modern systems for automatic speech recognition (ASR). These models assign probabilities to the sequences of acoustic feature vectors extracted by signal processing of speech waveforms. In this chapter, we investigate a new framework for parameter estimation in CD-HMMs. Our framework is inspired by recent parallel trends in the fields of ASR and machine learning. In ASR, significant improvements in performance have been obtained by discriminative training of acoustic models. In machine learning, significant improvements in performance have been obtained by discriminative training of large margin classifiers. Building on both these lines of work, we show how to train CD-HMMs by maximizing an appropriately defined margin between correct and incorrect decodings of speech waveforms. We start by defining an objective function over a transformed parameter space for CD-HMMs, then describe how it can be optimized efficiently by simple gradient-based methods. Within this framework, we obtain highly competitive results for phonetic recognition on the TIMIT speech corpus. We also compare our framework for large margin training to other popular frameworks for discriminative training of CD-HMMs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast online algorithm for large margin training of continuous density hidden Markov models

We propose an online learning algorithm for large margin training of continuous density hidden Markov models. The online algorithm updates the model parameters incrementally after the decoding of each training utterance. For large margin training, the algorithm attempts to separate the log-likelihoods of correct and incorrect transcriptions by an amount proportional to their Hamming distance. W...

متن کامل

Large Margin Hidden Markov Models for Automatic Speech Recognition

We study the problem of parameter estimation in continuous density hidden Markov models (CD-HMMs) for automatic speech recognition (ASR). As in support vector machines, we propose a learning algorithm based on the goal of margin maximization. Unlike earlier work on max-margin Markov networks, our approach is specifically geared to the modeling of real-valued observations (such as acoustic featu...

متن کامل

Online learning of large margin hidden Markov models for automatic speech recognition

We study the problem of parameter estimation in continuous density hidden Markov models (CD-HMMs) for automatic speech recognition (ASR). As in support vector machines, we propose a learning algorithm based on the goal of margin maximization. Unlike earlier work on max-margin Markov networks, our approach is specifically geared to the modeling of real-valued observations (such as acoustic featu...

متن کامل

Large Margin Training of Acoustic Models for Speech Recognition

LARGE MARGIN TRAINING OF ACOUSTIC MODELS FOR SPEECH RECOGNITION Fei Sha Advisor: Prof. Lawrence K. Saul Automatic speech recognition (ASR) depends critically on building acoustic models for linguistic units. These acoustic models usually take the form of continuous-density hidden Markov models (CD-HMMs), whose parameters are obtained by maximum likelihood estimation. Recently, however, there ha...

متن کامل

Soft margin estimation of hidden Markov model parameters

We propose a new discriminative learning framework, called soft margin estimation (SME), for estimating parameters of continuous density hidden Markov models. The proposed method makes direct usage of the successful ideas of soft margin in support vector machines to improve generalization capability, and of decision feedback learning in minimum classification error training to enhance model sep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007